Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.833
1.
J Ovarian Res ; 17(1): 101, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745186

BACKGROUND: Shikonin (SK), a naphthoquinone with anti-tumor effects, has been found to decrease production of tumor-associated exosomes (exo). This study aims to verify the treatment effect of SK on ovarian cancer (OC) cells, especially on the production of exo and their subsequent effect on macrophage polarization. METHODS: OC cells SKOV3 and A2780 were treated with SK. The exo were isolated from OC cells with or without SK treatment, termed OC exo and SK OC exo, respectively. These exo were used to treat PMA-induced THP-1 cells (M0 macrophages). M2 polarization of macrophages was determined by measuring the M2 specific cell surface markers CD163 and CD206 as well as the secretion of M2 cytokine IL-10. The functions of galectin 3 (LGALS3/GAL3) and ß-catenin in macrophage polarization were determined by gain- or loss-of-function assays. CB-17 SCID mice were subcutaneously injected with SKOV3 cells to generate xenograft tumors, followed by OC exo or SK OC exo treatment for in vivo experiments. RESULTS: SK suppressed viability, migration and invasion, and apoptosis resistance of OC cells in vitro. Compared to OC exo, SK OC exo reduced the M2 polarization of macrophages. Regarding the mechanism, SK reduced exo production in cancer cells, and it decreased the protein level of GAL3 in exo and recipient macrophages, leading to decreased ß-catenin activation. M2 polarization of macrophages was restored by LGALS3 overexpression but decreased again by the ß-catenin inhibitor FH535. Compared to OC exo, the SK OC exo treatment reduced the xenograft tumor growth in mice, and it decreased the M2 macrophage infiltration within tumor tissues. CONCLUSION: This study suggests that SK reduces M2 macrophage population in OC by repressing exo production and blocking exosomal GAL3-mediated ß-catenin activation.


Exosomes , Galectin 3 , Macrophages , Naphthoquinones , Ovarian Neoplasms , beta Catenin , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Humans , Exosomes/metabolism , Animals , Macrophages/metabolism , Macrophages/drug effects , beta Catenin/metabolism , Galectin 3/metabolism , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Cell Movement/drug effects , Apoptosis/drug effects , Mice, SCID
2.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Article En | MEDLINE | ID: mdl-38747836

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Drug Design , Hydrazines , Leishmania , Naphthoquinones , Trypanocidal Agents , Trypanosoma cruzi , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/chemical synthesis , Trypanosoma cruzi/drug effects , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Leishmania/drug effects , Hydrazines/chemistry , Hydrazines/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Parasitic Sensitivity Tests , Inhibitory Concentration 50 , Structure-Activity Relationship , Cysteine Endopeptidases
3.
Cell Mol Biol Lett ; 29(1): 63, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698330

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS: Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS: Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3ß-mediated ß-catenin ubiquitination and degradation, thus facilitating the Wnt/ß-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/ß-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS: Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/ß-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.


Endometrial Neoplasms , Glycogen Synthase Kinase 3 beta , Myosin Heavy Chains , beta Catenin , Humans , Female , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/genetics , Mice , Cell Proliferation/drug effects , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Prognosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Middle Aged , Naphthoquinones/pharmacology
4.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732208

The current study investigated the impact of cold stress on the morphological, physiological, and phytochemical properties of Juglans regia L. (J. regia) using in vitro microclone cultures. The study revealed significant stress-induced changes in the production of secondary antioxidant metabolites. According to gas chromatography-mass spectrometry (GC-MS) analyses, the stress conditions profoundly altered the metabolism of J. regia microclones. Although the overall spectrum of metabolites was reduced, the production of key secondary antioxidant metabolites significantly increased. Notably, there was a sevenfold (7×) increase in juglone concentration. These findings are crucial for advancing walnut metabolomics and enhancing our understanding of plant responses to abiotic stress factors. Additionally, study results aid in identifying the role of individual metabolites in these processes, which is essential for developing strategies to improve plant resilience and tolerance to adverse conditions.


Antioxidants , Cold-Shock Response , Juglans , Phytochemicals , Juglans/metabolism , Juglans/chemistry , Phytochemicals/metabolism , Antioxidants/metabolism , Secondary Metabolism , Metabolomics/methods , Gas Chromatography-Mass Spectrometry , Metabolome , Naphthoquinones
5.
Eur J Pharmacol ; 973: 176511, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38604545

Lung cancer is one of the most lethal cancers with high incidence worldwide. The prevention of lung cancer is of great significance to reducing the social harm caused by this disease. An in-depth understanding of the molecular changes underlying precancerous lesions is essential for the targeted chemoprevention against lung cancer. Here, we discovered an increased NQO1 level over time within pulmonary premalignant lesions in both the KrasG12D-driven and nicotine-derived nitrosamine ketone (NNK)-induced mouse models of lung cancer, as well as in KrasG12D-driven and NNK-induced malignant transformed human bronchial epithelial cells (BEAS-2B and 16HBE). This suggests a potential correlation between the NQO1 expression and lung carcinogenesis. Based on this finding, we utilized ß-Lapachone (ß-Lap), an NQO1 bioactivatable drug, to suppress lung tumorigenesis. In this study, the efficacy and safety of low-dose ß-Lap were demonstrated in preventing lung tumorigenesis in vivo. In conclusion, our study suggests that long-term consumption of low-dose ß-Lap could potentially be an effective therapeutic strategy for the prevention of lung premalignant lesions. However, further studies and clinical trials are necessary to validate our findings, determine the safety of long-term ß-Lap usage in humans, and promote the use of ß-Lap in high-risk populations.


Lung Neoplasms , NAD(P)H Dehydrogenase (Quinone) , Naphthoquinones , Animals , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , NAD(P)H Dehydrogenase (Quinone)/metabolism , Lung Neoplasms/prevention & control , Lung Neoplasms/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , Humans , Mice , Carcinogenesis/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/metabolism , Female , Cell Line
6.
J Nat Prod ; 87(4): 1217-1221, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38630559

Two unusual naphthoquinones, named here as pleonotoquinones A (1) and B (2), were isolated along with two known anthraquinones (3 and 4) via chromatographic separations of an ethyl acetate extract of the roots of Pleonotoma jasminifolia. Compounds 1 and 2 are the first examples of quinones bearing a 2-methyloxepine moiety. The compounds were isolated with the aid of mass spectrometry and molecular networking, and their structures were resolved using 1D and 2D NMR and HRESIMS data. The isolated compounds were evaluated for their antiproliferative activity against human cancer cell lines, and compounds 1 and 2 displayed cytotoxicity against human colon cancer HCT116 cells (IC50 = 2.6 µM for compound 1 and IC50 = 4.3 µM for compound 2) and human liver cancer HepG2 cells (IC50 = 1.9 µM for compound 1 and IC50 = 6.4 µM for compound 2).


Antineoplastic Agents, Phytogenic , Drug Screening Assays, Antitumor , Naphthoquinones , Plant Roots , Humans , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Plant Roots/chemistry , Hep G2 Cells , HCT116 Cells , Boraginaceae/chemistry
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 416-421, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660845

OBJECTIVE: To explore the effect of shikonin on autophagy and apoptosis of human promyelocytic leukemia cells and its possible mechanism. METHODS: Human promyelocytic leukemia cells NB4 in the logarithmic growth phase were divided into control group (untreated NB4 cells), shikonin group (0.3 µmol/L shikonin treatment), 740Y-P group (15 µmol/L PI3K/Akt/mTOR pathway activator 740Y-P treatment), shikonin+740Y-P group (0.3 µmol/L shikonin and 15 µmol/L 740Y-P co-treatment), after 24 hours of treatment, the cells were used for subsequent experiments. CCK-8 method was used to detect cell viability, monodansylcadaverine (MDC) staining to detect the aggregation of autophagic vesicles, flow cytometry to detect cell apoptosis, and Western blot to detect the expression of Beclin1, LC3, p62, Bax, cleaved caspase-3, Bcl-2 and PI3K/Akt/mTOR pathway related proteins. RESULTS: Compared with the control group, the purple punctate fluorescence intensity, apoptosis rate, Beclin1, LC3-Ⅱ/LC3-Ⅰ, cleaved caspase-3, and Bax protein expression in NB4 cells were increased in the shikonin group, while OD450 value (24, 48 h) and the expressions of Bcl-2 and p62 proteins were decreased (all P < 0.05). Compared with the control group, the purple punctate fluorescence intensity, apoptosis rate, Beclin1, LC3-Ⅱ/LC3-Ⅰ, cleaved caspase-3, and Bax protein expression in NB4 cells were decreased, while OD450 value (24, 48 h) and the expressions of Bcl-2 and p62 proteins were increased in the 740Y-P group (all P < 0.05). Compared with the shikonin group, the purple punctate fluorescence intensity, apoptosis rate, Beclin1, LC3-Ⅱ/LC3-Ⅰ, cleaved caspase-3, and Bax protein expression in NB4 cells were decreased, while OD450 value (24, 48 h) and the expressions of Bcl-2 and p62 proteins were increased in the shikonin+740Y-P group (all P < 0.05). Compared with the control group, the expression of PI3K/Akt/mTOR pathway related proteins p-PI3K, p-Akt, and p-mTOR in NB4 cells were significantly decreased in the shikonin group, while those in the 740Y-P group were increased (all P < 0.05). Compared with the shikonin group, the expressions of p-PI3K, p-Akt, and p-mTOR proteins in NB4 cells were significantly increased in the shikonin+740Y-P group (all P < 0.05). CONCLUSION: Shikonin may promote autophagy and apoptosis of NB4 cells by inhibiting PI3K/Akt/mTOR pathway.


Apoptosis , Autophagy , Leukemia, Promyelocytic, Acute , Naphthoquinones , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , Autophagy/drug effects , Apoptosis/drug effects , Naphthoquinones/pharmacology , Cell Line, Tumor , Leukemia, Promyelocytic, Acute/pathology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Cell Survival/drug effects , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Beclin-1/metabolism
8.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38593589

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Aniline Compounds , Ferroptosis , Naphthoquinones , Neoplasms , Thiophenes , Humans , Naphthoquinones/pharmacology , Apoptosis
9.
PLoS One ; 19(4): e0299002, 2024.
Article En | MEDLINE | ID: mdl-38626086

Tropical theileriosis is a fatal leukemic-like disease of cattle caused by the tick-transmitted protozoan parasite Theileria annulata. The economics of cattle meat and milk production is severely affected by theileriosis in endemic areas. The hydroxynaphtoquinone buparvaquone (BPQ) is the only available drug currently used to treat clinical theileriosis, whilst BPQ resistance is emerging and spreading in endemic areas. Here, we chronically exposed T. annulata-transformed macrophages in vitro to BPQ and monitored the emergence of drug-resistant parasites. Surviving parasites revealed a significant increase in BPQ IC50 compared to the wild type parasites. Drug resistant parasites from two independent cloned lines had an identical single mutation, M128I, in the gene coding for T. annulata cytochrome B (Tacytb). This in vitro generated mutation has not been reported in resistant field isolates previously, but is reminiscent of the methionine to isoleucine mutation in atovaquone-resistant Plasmodium and Babesia. The M128I mutation did not appear to exert any deleterious effect on parasite fitness (proliferation and differentiation to merozoites). To gain insight into whether drug-resistance could have resulted from altered drug binding to TaCytB we generated in silico a 3D-model of wild type TaCytB and docked BPQ to the predicted 3D-structure. Potential binding sites cluster in four areas of the protein structure including the Q01 site. The bound drug in the Q01 site is expected to pack against an alpha helix, which included M128, suggesting that the change in amino acid in this position may alter drug-binding. The in vitro generated BPQ resistant T. annulata is a useful tool to determine the contribution of the various predicted docking sites to BPQ resistance and will also allow testing novel drugs against theileriosis for their potential to overcome BPQ resistance.


Antiprotozoal Agents , Naphthoquinones , Parasites , Theileria annulata , Theileriasis , Ticks , Animals , Cattle , Theileriasis/drug therapy , Theileriasis/parasitology , Theileria annulata/genetics , Cytochromes b/genetics , Isoleucine/pharmacology , Methionine/pharmacology , Antiprotozoal Agents/pharmacology , Mutation , Racemethionine/pharmacology , Antiparasitic Agents/pharmacology , Ticks/parasitology
10.
ACS Appl Mater Interfaces ; 16(15): 18411-18421, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38584383

Cell necroptosis has presented great potential, acting as an effective approach against tumor apoptotic resistance, and it could be further enhanced via accompanying reactive oxygen species (ROS) overexpression. However, whether overproduced ROS assists the necroptotic pathway remains unclear. Thus, iron-palladium nanozyme (FePd NZ)- and shikonin (SKN)-encapsulated functional lipid nanoparticles (FPS-LNPs) were designed to investigate the ROS overexpression-enhanced SKN-induced necroptosis. In this system, SKN acts as an effective necroptosis inducer for cancer cells, and FePd NZ, a sensitive Fenton reaction catalyst, produces extra-intracellular ROS to reinforce the necroptotic pathway. Both in vitro and in vivo antitumor evaluation revealed that FPS-LNPs presented the best tumor growth inhibition efficacy compared with FP-LNPs or SKN-LNPs alone. Meanwhile, induced necroptosis by FPS-LNPs can further trigger the release of damage-associated molecular patterns (DAMPs) and antigens from dying tumor cells to activate the innate immune response. Taking biosafety into consideration, this study has provided a potential nanoplatform for cancer nanotherapy via inducing necroptosis to avoid apoptosis resistance and activate CD8+ T cell immune response.


Liposomes , Nanoparticles , Naphthoquinones , Necroptosis , Neoplasms , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis
11.
Mar Drugs ; 22(4)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38667780

Approximately 75,000 tons of different sea urchin species are globally harvested for their edible gonads. Applying a circular economy approach, we have recently demonstrated that non-edible parts of the Mediterranean Sea urchin Paracentrotus lividus can be fully valorized into high-value products: antioxidant pigments (polyhydroxynaphthoquinones-PHNQs) and fibrillar collagen can be extracted to produce innovative biomaterials for biomedical applications. Can waste from other edible sea urchin species (e.g., Sphaerechinus granularis) be similarly valorised? A comparative study on PHNQs and collagen extraction was conducted. PHNQ extraction yields were compared, pigments were quantified and identified, and antioxidant activities were assessed (by ABTS assay) and correlated to specific PHNQ presence (i.e., spinochrome E). Similarly, collagen extraction yields were evaluated, and the resulting collagen-based biomaterials were compared in terms of their ultrastructure, degradation kinetics, and resistance to compression. Results showed a partially similar PHNQ profile in both species, with significantly higher yield in P. lividus, while S. granularis exhibited better antioxidant activity. P. lividus samples showed higher collagen extraction yield, but S. granularis scaffolds showed higher stability. In conclusion, waste from different species can be successfully valorised through PHNQ and collagen extraction, offering diverse applications in the biomedical field, according to specific technical requirements.


Antioxidants , Collagen , Paracentrotus , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Collagen/chemistry , Paracentrotus/chemistry , Naphthoquinones/chemistry , Naphthoquinones/isolation & purification , Sea Urchins/chemistry , Waste Products , Biocompatible Materials/chemistry , Food Loss and Waste
12.
Antimicrob Agents Chemother ; 68(5): e0161223, 2024 May 02.
Article En | MEDLINE | ID: mdl-38602413

Mycetoma is a devastating neglected tropical infection of the subcutaneous tissues. It is caused by fungal and bacterial pathogens recognized as eumycetoma and actinomycetoma, respectively. Mycetoma treatment involves diagnosing the causative microorganism as a prerequisite to prescribing a proper medication. Current therapy of fungal eumycetoma causative agents, such as Madurella mycetomatis, consists of long-term antifungal medication with itraconazole followed by surgery, yet with usually unsatisfactory clinical outcomes. Actinomycetoma, on the contrary, usually responds to treatment with co-trimoxazole and amikacin. Therefore, there is a pressing need to discover novel broad-spectrum antimicrobial agents to circumvent the time-consuming and costly diagnosis. Using the resazurin assay, a series of 23 naphthylisoquinoline (NIQ) alkaloids and related naphthoquinones were subjected to in vitro screening against two fungal strains of M. mycetomatis and three bacterial strains of Actinomadura madurae and A. syzygii. Seven NIQs, mostly dimers, showed promising in vitro activities against at least one strain of the mycetoma-causative pathogens, while the naphthoquinones did not show any activity. A synthetic NIQ dimer, 8,8'''-O,O-dimethylmichellamine A (18), inhibited all tested fungal and bacterial strains (IC50 = 2.81-12.07 µg/mL). One of the dimeric NIQs, michellamine B (14), inhibited a strain of M. mycetomatis and significantly enhanced the survival rate of Galleria mellonella larvae infected with M. mycetomatis at concentrations of 1 and 4 µg/mL, without being toxic to the uninfected larvae. As a result, broad-spectrum dimeric NIQs like 14 and 18 with antimicrobial activity are considered hit compounds that could be worth further optimization to develop novel lead antimycetomal agents.


Alkaloids , Antifungal Agents , Madurella , Microbial Sensitivity Tests , Mycetoma , Mycetoma/drug therapy , Mycetoma/microbiology , Antifungal Agents/pharmacology , Animals , Alkaloids/pharmacology , Alkaloids/chemistry , Madurella/drug effects , Isoquinolines/pharmacology , Actinomadura/drug effects , Naphthoquinones/pharmacology , Larva/microbiology , Larva/drug effects , Moths/microbiology
13.
Biomater Adv ; 160: 213851, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642517

Burns are a significant public health issue worldwide, resulting in prolonged hospitalization, disfigurement, disability and, in severe cases, death. Among them, deep second-degree burns are often accompanied by bacterial infections, insufficient blood flow, excessive skin fibroblasts proliferation and collagen deposition, all of which contribute to poor wound healing and scarring following recovery. In this study, SNP/MCNs-SKN-chitosan-ß-glycerophosphate hydrogel (MSSH), a hydrogel composed of a temperature-sensitive chitosan-ß-glycerophosphate hydrogel matrix (CGH), mesoporous carbon nanospheres (MCNs), nitric oxide (NO) donor sodium nitroprusside (SNP) and anti-scarring substance shikonin (SKN), is intended for use as a biomedical material. In vitro tests have revealed that MSSH has broad-spectrum antibacterial abilities and releases NO in response to near-infrared (NIR) laser to promote angiogenesis. Notably, MSSH can inhibit excessive proliferation of fibroblasts and effectively reduce scarring caused by deep second-degree burns, as demonstrated by in vitro and in vivo tests.


Burns , Cicatrix , Hydrogels , Naphthoquinones , Wound Healing , Burns/drug therapy , Burns/pathology , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Cicatrix/prevention & control , Cicatrix/pathology , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Naphthoquinones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Fibroblasts/drug effects , Chitosan/pharmacology , Chitosan/chemistry , Temperature , Mice , Humans , Nitric Oxide/metabolism , Nitroprusside/pharmacology , Cell Proliferation/drug effects
14.
J Stroke Cerebrovasc Dis ; 33(6): 107689, 2024 Jun.
Article En | MEDLINE | ID: mdl-38527567

OBJECTIVES: Microglia-mediated neuroinflammation plays a crucial role in the pathophysiological process of multiple neurological disorders such as ischemic stroke, which still lacks effective therapeutic agents. Shikonin possesses anti-inflammatory and neuroprotective properties. However, its underlying mechanism remains elusive. This study aimed to investigate whether Shikonin confers protection against cerebral ischemia/reperfusion (I/R) injury by modulating microglial polarization and elucidate the associated mechanisms. METHODS: This study employed an oxygen-glucose deprivation and reoxygenation (OGD/R) BV2 microglial cellular model and a middle cerebral artery occlusion/reperfusion (MCAO/R) animal model to investigate the protection and underlying mechanism of Shikonin against ischemic stroke. RESULTS: The results demonstrated that Shikonin treatment significantly reduced brain infarction volume and improved neurological function in MCAO/R rats. Simultaneously, Shikonin treatment significantly reduced microglial proinflammatory phenotype and levels of proinflammatory markers (inducible-NO synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and IL-6), increased microglial anti-inflammatory phenotype and levels of anti-inflammatory markers (Arginase-1 (Arg1), transforming growth factor-beta (TGF-ß), and IL-10), reversed the expression of Nucleotide-binding oligomerization domain 2 (NOD2) and phosphorylation receptor interacting protein 2 (p-RIP2), and suppressed nuclear factor kappa-B (NF-κB) signaling activation in the ischemic penumbra regions. These effects of Shikonin were further corroborated in OGD/R-treated BV2 cells. Furthermore, overexpression of NOD2 markedly attenuated the neuroprotective effects of Shikonin treatment in MCAO/R rats. NOD2 overexpression also attenuated the regulatory effects of Shikonin on neuroinflammation, microglial polarization, and NF-κB signaling activation. CONCLUSION: This study illustrates that Shikonin mitigates inflammation mediated by microglial proinflammatory polarization by inhibiting the NOD2/RIP2/NF-κB signaling pathway, thereby exerting a protective role. The findings uncover a potential molecular mechanism for Shikonin in treating ischemic stroke.


Anti-Inflammatory Agents , Disease Models, Animal , Infarction, Middle Cerebral Artery , Inflammation Mediators , Microglia , NF-kappa B , Naphthoquinones , Neuroprotective Agents , Nod2 Signaling Adaptor Protein , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Reperfusion Injury , Signal Transduction , Animals , Naphthoquinones/pharmacology , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , NF-kappa B/metabolism , Signal Transduction/drug effects , Neuroprotective Agents/pharmacology , Male , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Nod2 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Anti-Inflammatory Agents/pharmacology , Inflammation Mediators/metabolism , Cell Line , Mice , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Phenotype , Cytokines/metabolism
15.
Chem Biodivers ; 21(4): e202301946, 2024 Apr.
Article En | MEDLINE | ID: mdl-38433095

In Turkish folk medicine, the roots of Onosma armeniacum Klokov are used to heal wounds, burns, hemorrhoids, hoarseness, dyspnea, stomach ulcers, and abdominal aches. The objective was to evaluate the plant's ethnopharmacological applications using in vivo pharmacological experimental models. In vivo linear incision and circular excision the wound models were used to assess the wound healing activity along with histopathological investigation. The active component(s) were isolated and identified after being exposed to several chromatographic separation procedures on the primary extract. The n-hexane-dichloromethane mixture extract was subjected to chromatographic separation after the wound-healing activity was confirmed. Deoxyshikonin (1), ß,ß-dimethylacrylshikonin (2), α-methyl-n-butylshikonin (3), isovalerylshikonin (4), acetylshikonin (5), ß-hydroxyisovalerylshikonin (6), and 5,8-O-dimethylacetylshikonin (7) were identified as the structures of the isolated compounds. The efficacy of O. armeniacum to heal wounds was investigated in this study. Shikonin derivatives were identified as the primary active components of the roots by bioassay-guided fractionation and isolation procedures.


Boraginaceae , Naphthoquinones , Boraginaceae/chemistry , Plant Extracts/chemistry , Wound Healing , Plant Roots/chemistry , Naphthoquinones/chemistry
16.
Bioorg Med Chem ; 102: 117671, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38452407

The search for novel anticancer drugs is essential to expand treatment options, overcome drug resistance, reduce toxicity, promote innovation, and tackle the economic impact. The importance of these studies lies in their contribution to advancing cancer research and enhancing patient outcomes in the battle against cancer. Here, we developed new asymmetric hybrids containing two different naphthoquinones linked by a 1,2,3-1H-triazole nucleus, which are potential new drugs for cancer treatment. The antitumor activity of the novel compounds was tested using the breast cancer cell lines MCF-7 and MDA-MB-231, using the non-cancer cell line MCF10A as control. Our results showed that two out of twenty-two substances tested presented potential antitumor activity against the breast cancer cell lines. These potential drugs, named here 12g and 12h were effective in reducing cell viability and promoting cell death of the tumor cell lines, exhibiting minimal effects on the control cell line. The mechanism of action of the novel drugs was assessed revealing that both drugs increased reactive oxygen species production with consequent activation of the AMPK pathway. Therefore, we concluded that 12g and 12h are novel AMPK activators presenting selective antitumor effects.


Antineoplastic Agents , Breast Neoplasms , Naphthoquinones , Humans , Female , MCF-7 Cells , Reactive Oxygen Species/metabolism , Triazoles/pharmacology , Naphthoquinones/pharmacology , AMP-Activated Protein Kinases , Cell Proliferation , Apoptosis , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Screening Assays, Antitumor
17.
Bioorg Med Chem Lett ; 104: 129714, 2024 May 15.
Article En | MEDLINE | ID: mdl-38522589

A series of new fluorinated dihydrofurano-napthoquinone compounds were sucessfully synthesized in good yields using microwave-assisted multi-component reactions of 2-hydroxy-1,4-naphthoquinone, fluorinated aromatic aldehydes, and pyridinium bromide. The products were fully characterized using spectroscopic techniques and evaluated for their anti-inflammatory activity using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Among 12 new compounds, compounds 8b, 8d, and 8e showed high potent NO inhibitory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values ranging from 1.54 to 3.92 µM. The levels of pro-inflammatory cytokines IL-1ß and IL-6 in LPS-stimulated RAW264.7 macrophages were remarkably decreased after the application of 8b, 8d, 8e and 8k. Molecular docking simulations revealed structure-activity relationships of 8b, 8d, and 8e toward NO synthase, cyclooxygenase (COX-2 over COX-1), and prostaglandin E synthase-1 (mPGES-1). Further physicochemical and pharmacokinetic computations also demonstrated the drug-like characteristics of synthesized compounds. These findings demonstrated the importance of fluorinated dihydrofurano-napthoquinone moieties in the development of potential anti-inflammatory agents.


Lipopolysaccharides , Naphthoquinones , Mice , Animals , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Naphthoquinones/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cytokines/metabolism , RAW 264.7 Cells , Cyclooxygenase 2/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II
18.
Eur J Med Chem ; 268: 116249, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38458106

Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.


Antineoplastic Agents , Biological Products , Naphthoquinones , Cell Line, Tumor , Naphthoquinones/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
19.
Med Oncol ; 41(4): 89, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38520625

The handshake between the complex networks of matrix components in the tumor micro-environment (TME) is considered as a crucial event in the progression of several cancers including cervical carcinoma (CC). A number of studies report a connection between epidermal growth factor (EGF) and matrix component production. Studies demonstrate that the mechano-transduction trigger by collagen, influences the tumor cells to undergo epithelial-mesenchymal transition (EMT) and block the entry of drugs. We hypothesize that the intervention to prevent EGF triggered deposition of matrix components could sensitize several therapies for CC cells. We utilized morphological assessment, MTT assay, mitored tracking, acridine orange (AO)/ ethidium bromide (EtBr) staining and bromodeoxyuridine (BrdU) assay to measure the cell viability, mitochondrial activity, cellular apoptosis, and DNA synthesis. Clonogenic assay and scratch healing assay were executed to address the stemness and migratory potential. Detection of glycosaminoglycan's (GAGs), collagen, matrix metalloproteinase (MMP)-2/9 secretion and calcium (Ca2+) ions were performed to assess the production of matrix components. Finally, the interaction between EGFR and plumbagin was evaluated by employing molecular dynamics (MD) simulation. Pre-treating the cells with plumbagin inhibited the EGF-induced EMT along with reduction in cell proliferation, migration, clonogenesis and depletion of matrix components. The actions of EGF and plumbagin were more pronounced in HPV-positive CC cells than HPV-negative CC cells. This study identified that increased matrix production triggered by EGF-rich milieu is inhibited by plumbagin in human papilloma viral (HPV) 68 positive ME180, HPV 16 positive SiHa and HPV-negative C33A cell lines. Delivery of plumbagin directly to TME would effectively accelerate the clearance of CC cells, reduce metastasis and matrix abundance by employing targeted delivery to minimize the undesired effects of plumbagin.


Carcinoma , Naphthoquinones , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Collagen , Epidermal Growth Factor/metabolism , ErbB Receptors/genetics , Tumor Microenvironment , Uterine Cervical Neoplasms/drug therapy
20.
Bioorg Chem ; 146: 107300, 2024 May.
Article En | MEDLINE | ID: mdl-38522391

In the present study, an intermediate namely 2-(3-bromopropylamino)-3-chloronaphthalene-1,4-dione was initially synthesized via the nucleophilic addition-elimination reaction between 2,3-dichloro-1,4-naphthoquinone and 3-bromo-1-aminopropane. Then a coupling reaction between the intermediate and piperazine derivatives yielded a number of 1,4-naphthoquinone derivatives. Spectroscopic analysis successfully characterized the products that were obtained in good yields. In vitro antibacterial properties of the compounds were examined against different bacterial strains. In vitro antibacterial properties of the compounds were examined against the bacterial strains S. Aureus, E. Faecalis, E. Coli and P. Aeruginosa. While compound 9 was found to be effective against all bacterial strains used, compound 12 was active against three strains and compounds 10 and 11 were effective against the two. None of the compounds are effective against C. albicans strain. In silico molecular docking studies revealed that all compounds had docking scores comparable to the antibacterial drugs ciprofloxacin and gentamicin and might be considered as DNA gyrase B inhibitors. Molecular dynamics simulations were also conducted for a better understanding of the stability and the selected docked complexes. Additionally, the drug similarity of the synthesized compounds and ADMET characteristics were examined in conjunction with the antibiotic ciprofloxacin, and drug potentials were then evaluated. Compatible predictions were found with the drug similarity and ADMET parameters.


Escherichia coli , Naphthoquinones , Staphylococcus aureus , Molecular Docking Simulation , Anti-Bacterial Agents/chemistry , Ciprofloxacin/pharmacology , Bacteria , Topoisomerase II Inhibitors/pharmacology , Microbial Sensitivity Tests
...